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Fermion Masses in a Strong Yukawa Coupling 
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For strong enough Yukawa coupling the electroweak standard model fermion 
finds it energetically advantageous to transform itself into a bound state in the 
hedgehog background of the Higgs field in the semiclassicai approximation. By 
considering that the bound states give the masses for the lepton and quark, it is 
found that all fermion masses can be described by the strongly Yukawa coupling 
constants which tend to a unitary constant. 

1. I N T R O D U C T I O N  

The standard model of  the electroweak interaction (Glashow, 1961; 
Weinberg, 1967; Salam, 1968) has received a great deal of  phenomenological 
support. The gauge boson and fermion structure of  the model has been 
confirmed to a high degree of accuracy, although there is very little phenome- 
nological support for the Higgs sector of  the theory. The most difficult part 
of  this theory to understand is the Yukawa sector. It contains a large number 
of  free parameters that must be adjusted by hand to obtain a realistic spectrum 
of particles and mixings. In this sector, there are no explanations for the 
three-generation structure of  leptons and quarks. Recently, it was reported 
that the top quark mass is much bigger than the masses of  other leptons and 
quarks (Abe et  al., 1995). There is a large mass hierarchy among three- 
generation fermions. One can try to understand these features of  the standard 
electroweak theory by the use of  some of  the successful ideas of  this theory 
or by entirely new ideas. 

The basic dynamical degrees of  freedom in the electroweak theory are 
the two-component Weyl fields with definite helicities. The gauge interactions 
conserve helicity and do not mediate between the system of the left-handed 
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and that of the right-handed fermions. The only bridge between these two 
systems is provided by the hypothetical scalar Higgs boson, which couples 
to the various fermions with a strength proportional to their masses. The 
lepton and the quark in the standard model are massless before the spontaneous 
symmetry breaking (SSB) and their masses are produced by the Yukawa 
coupling after the SSB. The standard picture in the model with SSB involves 
a vacuum expectation value (VEV) for the Higgs fields which are constant 
over the whole space. The fermion mass values are given by introducing 
Yukawa coupling constants, and the masses are proportional to the Yukawa 
coupling constants. On the other hand, it is expected that the presence of a 
fermion with strong coupling to the Higgs field can modify the standard 
picture. As the Yukawa coupling increases, the Higgs field around a fermion 
tends to go over from a uniform spatial configuration to a hedgehog configura- 
tion (Johnson et  al., 1987; Soni et  al., 1989; Kahana et  al., 1984; Birse and 
Banerjee, 1985). The uniform configuration leads to a fermion mass which 
increases linearly with the coupling constant, while the hedgehog configura- 
tion gives a decreasing mass. 

The existence of two possible configurations means that one can get 
the same mass value in both the weakly Yukawa coupling phase and the 
strongly Yukawa coupling phase. To describe the mass spectrum of the 
lepton and the quark in the weakly coupling phase, we must introduce nine 
hierarchical Yukawa coupling constants which vary about from 10 -6 to 1.0. 
In this paper, alternatively, we shall consider the consequences of having a 
strongly Yukawa coupling phase take the place of the standard picture for 
the fermion sector in the Weinberg-Salam model. It is found that all the 
lepton and quark masses can be described by the strongly Yukawa coupling 
constants, which tend to a unitary constant. 

The strongly coupled fermion-Higgs sector of the standard model has 
been investigated by Johnson and Schechter (1987) and Soni et  al. (1989), 
who exploit the analogy between the strong Yukawa coupling theory and the 
chiral linear o'-model. They follow Kahana e t  al. (1984), who work in the 
context of the strong interaction. In this paper we will focus on some features 
of this scheme for the strong Yukawa coupled standard model from a different 
point of view. We change the strength of Yukawa coupling in the standard 
electroweak theory and show that the fundamental ground state of the fermion- 
Higgs system is not the trivial ground state given by the uniform spatial 
Higgs field, but is the nontrivial ground state with hedgehog configuration 
of the Higgs field. The nontrivial ground states give the masses to the leptons 
and quarks. 

Throughout this paper we work in the classical approximation, i.e., we 
neglect the radiative corrections due to the boson loops and the contribution 
of the Dirac sea to the energy of the system. The question of whether these 
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effects are important is beyond the present scope. On the other hand, the 
large Yukawa constants in the standard model cannot be included without 
violating vacuum stability (Huang, 1979; Politzer and Wolfram, 1979). How- 
ever, the problem may be overcome by introducing new physics in the TeV 
region, for example, supersymmetric theories. We will discuss these problems 
at the end of the paper. 

2. B R I E F  R E V I E W  O F  W E I N B E R G - S A L A M  M O D E L  

We first give a brief review of the electroweak standard model. The 
model contains left-handed and right-handed Weyl fermion fields, SU(2)L • 
U(I) gauge fields A~ and B~, and a complex Higgs doublet q). The Lagrangian 
of the model is given by ~ = ~b + ~y. The bosonic Lagrangian is 

~ b = - 1 F ~ F ~ V ' ~  h(r - ~ )  2 (1) 

where F ~  and G~v are the SU(2)~ and U(1) field strength tensors, respectively. 
The fermionic Lagrangian in the chiral representation reads 

~ / =  ~b--'Li~O~O~. + -~Ri~V'Dv.UR + TIRi,#OodR 
-- fv(~.dPUR + -aR~t~bL) - fO(-~LdPdR + -ilRdPtd~L) (2) 

where *L denotes the left-handed doublet (uL, dL), uR and dR are the right- 
handed singlets, and ~ = iz2~*. Here we use (u, d) to represent the (up, 
down) lepton pair and quark pair. In order to discuss the strong Yukawa 
coupling model in the following, we introduced the right-handed neutrino to 
make the small Dirac mass neutrino. 

The SU(2)t gauge symmetry is spontaneously broken due to the nonvan- 
ishing VEV v of the Higgs field, 

v(0) 
( ~ ) -  ~ (3) 

leading to the gauge boson W and Z masses and Higgs mass: 

1 1 
Mw = g g2v, Mz = ~ (g2 + g2)l/2v, Mn = v q / ~  (4) 

where gl and g2 are the U(1) and SU(2) gauge coupling constants, respectively, 
and we take v = 246.0 GeV. When the Higgs field develops the VEV v, we 
see that the Higgs field configuration takes the form of a spatially uniform 
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field. The fermions then acquire masses through their Yukawa couplings f u  
and f o: 

v v 
mu = fu  --'~, no = fo ~ (5) 

The masses of three-generation leptons and quarks in the Weinberg-Salam 
model are described by the following Yukawa coupling constants: 

f~e < 2.93 • 10 -:~, 

fu = 2.87 • 10 -5, 

f ~  < 1.55 • 10 -6, (6) 

fc = 7.47 X 10 -3 , 

f~, < 1.78 • l0 -4, f~ = 1.02 X 10 -2 

f t  = 1.01 • 10 +~ fb = 2.47 X 10 -2 

where we have taken the approximate values for m, = 5 MeV, m d = 10 
MeV, m, = 200 MeV, mc = 1.3 GeV, mb = 4.3 GeV, and mt= 176 GeV. 
We see that the Yukawa coupling constants are weak and unorganized over 
a wide range. A large hierarchy appears in the Yukawa coupling constants. 

fe  = 2.94 • 10 -6 

fd = 5.75 • 10 -5 

f r  = 6.07 • 10 -4 

fs  = 1.15 • 10 -3 

3. S T R O N G  YUKAWA C O U P L I N G  M O D E L  

Instead of weak Yukawa coupling in the Weinberg-Salam model, let us 
consider the case of  strong Yukawa coupling. We will compare its prediction 
with the ground-state energy estimated in a semiclassical manner. Since the 
Higgs field gives the mass of  the fermions, we can neglect the gauge degree 
of freedom with A~ = B~ = 0 in the Weinberg-Salam model. By a simple 
redefinition of  Higgs fields 

= - ~  - iaro ] (7) 

and fermion fields 0 = 0L + OR, where OR stands for u R and dR, we can 
write the Lagrangian ~ as 5~ -- ~ + ~ ' ,  with 

1 1 - 
~ , ~  = ~ (O~(r) 2 + ~ (O.'tr) 2 + tlry"O.O - g~(cr + i~5'n �9 'r) 0 - U(o', 'n) (8) 

where 

k v212 (9)  U(~r, "rr) = ~ [or 2 + "rr 2 - 
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and 

~ '  = g'[i'tr0~(1 - ~/5)~ + ~'r3(cr + i~r. -r)~] (10) 

where g = (fv + fo)12,f2, g' = ( f v -  fo)/2v/-~, and ~o  is the o'-model 
Lagrangian. In the strong Yukawa coupling model, we may assume that the 
difference of the strongly Yukawa coupling constants for the up-type and 
down-type leptons and quarks is small (top and bottom quarks as well). If 
the strongly Yukawa coupling constants are big enough, then we have g > >  
g'. It is very reasonable to make an approximation negecting the term in 
(10). z In the following we will see that in the strong coupling model all the 
strongly Yukawa coupling constants tend to a unitary constant and g' tends 
to zero. So in what follows we shall then as a simplification neglect ~ ' ,  
leaving us with ~ = ~s 

3.1. Hedgehog Configuration and Radial Equat ions  

There is no guarantee that the classical solution (3) gives the lowest 
possible ground-state energy in the fermion sector. In the semiclassical 
approximation we include only the valence fermion and we treat the (cr, "rr) 
fields as classical. We consider the hedgehog solution, for which the chiral 
fields have the form, in terms of the fields, 

cr(x) = or(r), 7r(x) = "tr(r)~ (11) 

with ~ = fir. The pion field then has a dipole shape whose space orientation 
is coupled to the isospin orientation. 

With chiral fields of the form (11), the Dirac equation of fermions admits 
an s-state solution of the form 

1 [  G(r) 
*(x) = ~ [i(cr. P)F(r)) Xh (12) 

where • is a state in which the spin and isospin of the fermion couple to 
zero as (or + T)X h = 0. Taking the ansatz of (11) and (12) and minimizing 
(8) produces the following coupled nonlinear equations: 

1 d e OU g2 
r dr z [ro'(r)] - 00" 4"rr [G2(r) - F2(r)] 

1(de 2) ou g2 
r ~ P [mr(r)] -- -~- + ~ G(r)F(r) (13) 

2In the Weinberg-Salam model, this approximation is problematic for top and bottom quarks. 
However, in the strong Yukawa coupling model, this problem is absent. 
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dF(r) + [ 2 -  g'tr(r)] F(r) + [to + gtr(r)]G(r) = 

dG(r) 
- -  + g~r(r)G(r) + [-to + gtr(r)]F(r) = O. 

dr 

The quantity to is the eigenvalue of the spinor d~(x) and the radial fermion 
wave functions are normalized to f r  2 dr [F2(r) + G2(r)] = 1. 

These equations are supplemented by the following boundary conditions: 

tr(r) --~ Cl, 7r(r) ~ O, G(r) --~ c2, F(r) ~ O, as r ~ 0 (14) 

tr(r) ~ -v ,  ~r(r) --~ O, G(r) ~ O, F(r) ~ O, as r ~ oo 

where ct and c2 are arbitrary constants. These express the fact that the physical 
vacuum is recovered at infinity. In this 'physical' vacuum the fermions are 
free Dirac particles of mass gv, and chirality is spontaneously broken. 

The hedgehog solution is a self-consistent solution in the sense that, 
when fermions occupy an orbital of  the form (12), the equations in (13) for 
the chiral fields admit a solution of the form (11). The energy E of  the system 
can be written in the form 

[i ~ ( ( ~ r r ) )  ~" (dTr ( r )~2 -~  } E = to + 2"tr r 2 d r  + \ - - -~r]  + "rr2(r) 

+ 21rh r 2 dr [~2(r) + ~2(r) - v212 (15) 

A state will be bound if its energy E is lower than the mass gv of  one free 
fermion as EIgv < 1; a fermion orbital is bound and it decays exponentially at 
large distance if its energy eigenvalue to is such that Itol < gv. In the strong 
coupling model, we would consider that the bound state gives the mass for 
the fermion. The size and the energy scale in such a way that once a bound 
state is found with an appropriate value of g, one can make the energy 
increase and the size decrease proportionally with v. 

3.2. Soluble Model 

Before discussing the solution of  the coupled set of  equations (13), it 
is instructive to consider a soluble model on the chiral circle approximation. 
When the constant h in the Lagrangian (8) is large enough, the minimum 
energy occurs for chiral fields restricted to the chiral circle 0"2(0 + "rr2(r) = v 2. 
In this situation it is possible to parametrize the chiral fields by a chiral 
angle 0(r): 

tr(r) = v cos 0(r), "rr(r) = v sin 0(r) (16) 
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When one fermion fills an orbital of energy to, the energy (15) of  the system 
can be expressed in terms of the chiral angle as follows: 

E = to + 2"rrv 2 r 2 dr [(dO(r)~2 + 2  [\---~-r  ] sinZ0(r) (17) 

It is easy to establish that the equations for the or(r) and ~(r) fields in 
(13) admit solutions which behave as 0(r) ~ r - nat as r ~ 0 and 0(r) ~ 1/ 
r z as r ~ oo. Let us consider a soluble model in which the chiral angle 0(r) 
takes a 'trial' form 0(r) = -'tr(1 - r/R) for r < R and 0(r) = 0 for r > R 
as carried out by Kahana et al. (1984), corresponding to the choice n = 1. 
The accuracy of  this model is assessed in a self-consistent calculation, and 
it proves quite adequate for a discussion of the physics. 

A numerical study of the Dirac equations in (13) with the linear form 
of the chiral angle has been carried out by Kahana et al. (1984). The energy 
eigenvalue to is well described by the expression 

3.12 
to = - -  - 0.94gv (18) 

R 

valid in the range 2 < R < 12. By substituting the expression (18) for to 
and the linear form of the chiral angle into (17), we obtain a schematic 
expression for the energy of  the system as a function of  R: 

E = 3.1___22R - 0.94gv + 2~r~ 1 + -~- R (19) 

This equation may be considered as an effective mass formula for the system. 
The equilibrium value of  R is the value which minimizes the energy 

(19). One finds R = 0.34/v, and the minimum energy is then given by 

Em~n = v(18.33 - 0.94g) (20) 

The coupling constant g in this model must remain in the range 9.5 < g < 
19.5 to make E ~ ,  < gv for the bounded system and Emi n > 0 for the energy 
to be nonnegative. 

We see that, as the coupling constant g increases, the Higgs field around 
a fermion tends to go over from a uniform spatial configuration to a hedgehog 
configuration which gives a decreasing mass with increasing g. We think 
that the lepton and quark masses are given by the hedgehog configuration 
of the Higgs field and not by the usual uniform configuration (3) in the 
Weinberg-Salam model. According to this idea, the energy of the bound state 
is just the fermion mass, mf = Emi,. From equation (20), we find that the 
fermion mass depends linearly on the coupling constant g = (fu + fo) /2 , f2 ,  
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so we can obtain the values of the strongly Yukawa coupling constants fu 
and f o  from the up-type and down-type fermion masses, respectively. The 
hedgehog configurations of the Higgs field give the masses of the three- 
generation fermions from the following strongly Yukawa coupling constant 
Yi (i for leptons and quarks): 

Yi = 0-~94 (18"33v/2 - f i )  (21) 

where f i  is the usual Yukawa coupling constant in equation (6). The Yi are 

y~e> 27.572998, ye = 27.572996 

y~ = 27.572969, yd = 27.572938 

yv>27.572998,  y~ = 27.572354 

Yc = 27.565053, ~ =  27.571776 

y~ > 27.572810, y, = 27.562148 

Yt = 26.498531, Yb = 27.546723 

given by 

(22) 

It is found that the quantitative differences in these Yukawa coupling constants 
appear after the decimal point, except for the top quark; these Yukawa coupling 
constants tend toward a unitary constant. While the values in (22) depend 
on the accuracy of the calculation, the results do not qualitatively depend on 
the particular choice for VEV v or the calculation accuracy. 

3.3. stir-Consistent Calculation 

In order to obtain more exact results for the strongly Yukawa coupling 
constant, we solve numerically the nonlinear differential equations (13) for 
the eigenvalue to under the boundary conditions (14) for the bound state. 
Integration of the set of equations (13), with normalization to one fermion, 
was performed with the aid of the program COLSYS (Ascher et al., 1979). 

In Fig. 1 we show the total energy of the system (15) as a function of 
the Yukawa coupling constant for one bound fermion and for several values 
of the Higgs mass (the Yukawa coupling constant f can be related to coupling 
constant g as f = x/~g). We see that for a given Higgs mass, there exists a 
critical value of the Yukawa coupling constant above which the fermion can 
form a stable bound state (as a nontopological soliton) (Friedberg and Lee, 
1977) which is lower in energy than the normal mass of one free fermion. 
These results agree with those of Nolte and Kunz (1993) and Petriashvili 
(1992). For a given f, the energy of the bound state (soliton) increases 
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Fig. 1. The bound-state energy (fermion mass) as a function of  the Yukawa coupling constant 
for Higgs mass Mn = 0.174 TeV (solid curve), Mn = 0.522 TeV (dot-dashed curve), and Mn 
= 0.870 TeV (dashed curve) for one bound fermion. The dotted line represents the usual 
Yukawa coupling case. 

monotonically with the Higgs mass. The energy of the bound state becomes 
negative for the Yukawa coupling Constant f ~ 21.0 for the Higgs masses 
considered. This value gives the upper bound for the Yukawa coupling 
constant. 

As in the soluble model, we think that the bound states give the lepton 
and quark masses. From (15) we see that the energy of the bound state 
(soliton) depends on both the Ynkawa coupling constant f and the Higgs 
self-coupling constant h; thus the fermion mass also depends on both f and 
Mn. This is different from the standard Weinberg-Salam picture in which 
the fermion mass can be described by the Yukawa coupling constant alone. 
In Fig. 1, we see that in the strong Yukawa coupling region (f  -- 20.0), the 
dependence of the fermion mass on f (or g) is approximately linear. As in 
the soluble model, we can obtain the values of f u  and f o  from the up-type 
and down-type fermion masses, respectively. The strongly Yukawa coupling 
constants for the leptons and the quarks are given as follows, where we take 
Mn = v1.r = 0.174 TeV: 

Y~e >20-789611, Ye = 20.789611 

y, = 20.789595, Ya = 20.789577 
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y~r > 20.789611, 

Yc = 20.784979, 

y ~ > 2 0 . 7 8 9 5 0 2 ,  

Yt = 20.118602, 

yr = 20.789236 

y , =  20.788911 

y,  = 20.783310 

Yb = 20.774090 

(23) 

These strongly Yukawa coupling constants tend to a unitary constant, similar 
to the case in the soluble model,  but with a smaller value. Due to the numerical 
accuracy, the results presented above are not the final values o f  the Yukawa 
coupling constants for  leptons and quarks, although they do not depend 
qualitatively on the numerical accuracy. 

In Fig. 2 we show the radial functions for the bound state (soliton) with 
Yukawa coupling constant Ye = 20.789611 for  electron mass in the case of  
Mn = 0.174 TeV. We see that the fermion is localized in a small region of  
the space, while the Higgs field approaches its VEV, where tr(r) ~ - v  and 
"a'(r) --* 0, much more slowly. We can define the mean-square radius o f  the 
bound state as 

o 

r0 = x / ~ ,  (r  2) = r 4 dr [G2(r) + F2(r)l  (24) 

The typical radius o f  the bound state for  the lepton and the quark is ro 

.=o 

-3 

G(r) 

.............. F(r) 

. . . . . .  a(r) 

............ ~(r) 

0 1 2 3 4 5 

r [ I /TeV]  
Fig. 2. The fermion field functions G(r) (solid curve) and F(r) (dotted curve) and Higgs field 
functions (r(r) (dot-dashed curve) and It(r) (dashed curve) of the bound state (soliton) for the 
electron as a function of the distance r for Mx = 0.174 TeV and Yukawa coupling constant f 
= 20.789611. 
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0.67/TeV with MH = 0.174 TeV. This value is within the limiting value of 
recent experimental data (Particle Data Group, 1996). The typical intrinsic 
energy scale in this strong coupling model is Mo = y v l x / ~  ~ 3.6 TeV. This 
leads to the interesting possibility of probing the size of leptons and quarks 
in the next generation of colliders. 

As shown in Fig. 2, the hedgehog configuration of Higgs fields [tr(r), 
~r(r)] obviously appears in a region of small distance (smaller than 1.0/TeV) 
and tends to a uniform configuration at large distances (much bigger than 
1.0/TeV). On the other hand, the electroweak gauge symmetry is broken at 
the energy scale of about 100 GeV (at the distance of 10.0greV), where the 
hedgehog configuration of the Higgs field is close to the normal vacuum 
configuration (3). So the strong coupling model produces almost the same 
W and Z masses as the Weinberg-Salam model. However, there is a slight 
difference from the Weinberg-Salam model due to the fact that the field ~r(r) 
is not exactly zero in the region of 100 GeV. It should be possible to look 
for this difference in current experiments. 

4. CONCLUDING REMARKS 

We have described the lepton and quark masses associated with the 
electroweak standard model when it carries a strongly coupled fermion-Higgs 
sector. Within the semiclassical approximation (at the tree level), we have 
shown that all the masses of leptons and quarks can be given by the strongly 
Yukawa coupling constants, which tend toward a unitary constant. On the 
other hand, in the strong coupling model, the W and Z masses produced by 
the hedgehog configuration of the Higgs field show almost no change. The 
fermion masses depend slightly on the mass of the Higgs boson at the 
tree level. 

The strong coupled fermion-Higgs bound state (soliton) may be unstable 
with regard to quantum radiative corrections (Anderson e t  al. ,  1990; Bagger 
and Naculich, 1991). This possible quantum instability should be a common 
problem in non-point models for leptons and quarks. It is due to the fact that 
the resulting bound states have sizes which are so much smaller than their 
Compton wavelengths. This fact is only understandable dynamically if there 
exists an approximate symmetry which forces certain bound states to have 
nearly zero mass. On the other hand, the strong Yukawa coupling in the 
standard model will violate vacuum stability (Huang, 1979; Politzer and 
Wolfram, 1979) due to radiative corrections, so we should improve the 
standard model with new physics in the TeV region. In order to stabilize the 
bound states for the fermion and Higgs vacuum structure against quantum 
effects, new symmetry should be introduced into the standard model, possibly 
supersymmetry. In the supersymmetric theories, the radiative corrections due 
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to fermions and bosons cancel miraculously, stabilizing any mass hierarchies 
that exist and the Higgs vacuum structure. Although there are some problems 
for the strong Yukawa coupling approach to the fermion mass at the quantum 
level in the standard model, we stress that the strong Yukawa coupling 
approach is applicable all spontaneous symmetry-breaking theories, such as 
the supersymmetric standard model, SUSY-GUT. So we believe that the 
strong Yukawa coupling approach may be self-consistent at the quantum 
level in the supersymmetric standard model. 

One of the fundamental questions in particle theory is that of the genera- 
tion structure of quarks and leptons. There are no explanations for this problem 
in the standard model. The composite models address this problem through 
quark and lepton substructure in which the generation replication at higher 
mass scales is explained by the existence of excited levels of the fermionic 
bound states. In the strong Yukawa coupling model, leptons and quarks are 
fermion-Higgs bound states (solitons) in the TeV region (energy scale about 
3.6 TeV). This offers a new possibility to solve the fermion generation 
problem. The generations might be considered as excitations of the fermion- 
Higgs bound states in the strong Yukawa coupling model. 
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